Volume 27 Study S-1

STATE OF ALASKA

Bill Sheffield, Governor

Annual Performance Report for
TONGASS LAND MANAGEMENT PLAN; DATA BASE DEVELOPMENT

Ъу

Mark W. Schwan

ALASKA DEPARTMENT OF FISH AND GAME Don W. Collinsworth, Commissioner

DIVISION OF SPORT FISH E. Richard Logan, Director

TABLE OF CONTENTS

Study:	S-1		TUD																			Page
Job:	S-1-2B		gas elo M	pme	nt		ana chw		nen	t i	P1a	ın;	Da	ıta	Ва	ase						
Resea Objectiv Techniqu Data TLMP Findings	dations ement	atio									• • •										 	13 14 14 14 14 16 16 16 16
	Coordin	atio	n.		:	:		•	:	•	• •	•	:	:								18 18
Table	l. Lis	t of revi		mmo ons	n N	lam	es,	So.	ie.	nt •	ifi	lc l	Nan •	nes							•	15
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	B Sam C Sam C D Sam C E Sam C F Sam C G Sam C H Sam C I Sam	ple ple ple ples ples ples ples ples ple	of of of of of of of Pro	Reg Sta Val Op Cu Da an gra	ion tew ue eni sto ta App	rid Co ng om Ou li	St mpa Me Dat tpu cat	oclary ris nus a l ts ion	kin ves son Ent Ent	g t or ry ro	Fill Dat nit Da Sc Sc gra	le.	for VCI Ba ens in Da	S S ase dB	ou Ra • • as	the	as g	t A	Ala le	ask	 	20 21 22 23 24 25 26 27

RESEARCH PROJECT SEGMENT

State:

Alaska

Sport Fish Name:

Investigations

of Alaska

Project: F-10-1

Study: S-1

Study Title: A STUDY OF LAND USE

ACTIVITIES AND THEIR RELATIONSHIP TO THE SPORT FISH RESOURCES

IN ALASKA

Job:

S-1-2B

Job Title:

Tongass Land Manage-

ment Plan; Data Base

Development

Cooperator: Mark W. Schwan

Period Covered: 1 July 1985 to 30 June 1986

ABSTRACT

The sport fisheries computer data base was expanded to include regional information on lake and stream stocking, sport-fishing effort and the harvest estimates generated from the Statewide Harvest Survey, as well as fisheries ratings of all management units within the Tongass National More lakes and streams were added to the general inventory file, and other data sets were organized for future keypunching. Numerous dBase-III application programs were written for easy access and operation of the data base. These programs included screen menu generators, customized screens for data entry and file editing, and a wide variety of programs for retrieving data in desired summary outputs.

The Alaska National Interest Lands Conservation Act, section 706 (b), report on the effects of logging on fish resources was finalized. Assistance was also given to the Habitat Division in their publication of an overview of fish and wildlife use in southeast Alaska.

KEY WORDS

Tongass, Tongass Land Management Plan, TLMP, Alaska National Interest Lands Conservation Act, ANILCA, Sport Fish, planning, 706(b), U.S. Forest Service, habitat, logging, data base, inventory, lakes, streams, stocking, southeast Alaska, fisheries.

BACKGROUND

The Tongass Land Management Plan (TLMP) will be revised in 1989. This plan, which directs the management for most of southeast Alaska's fisheries habitat, is crucial to the future of the region's fisheries resources.

When the Alaska National Interest Lands Conservation Act (ANILCA) was passed in 1980, one of its most controversial sections was the national forest timber utilization program (Section 705). It was specified therein that the Secretary of the Treasury shall make available to the Secretary of Agriculture the sum of \$40 million annually, or as much as the Secretary of Agriculture deems necessary, to maintain a timber supply from the Tongass National Forest to dependent industry at a rate of 4.5 billion board feet per decade.

Section 706(b) of ANILCA required that within 5 years, the U.S. Forest Service (USFS), in cooperation with the State of Alaska, affected Native corporations, the southeast Alaska timber industry, the Southeast Alaska Conservation Council, and the Alaska Land Use Council, prepare a report to Congress on the status of the Tongass National Forest. In 1984 the Regional Forester recommended that cooperating agencies and organizations would be wise to prepare their own documents in response to the 706(b) mandate, in lieu of solely attempting to shape the USFS report to their liking. The Alaska Department of Fish and Game (ADF&G) decided to do just that. This resulted in the publication of a technical report dealing with the fish and wildlife issues related to timber management on the Tongass National Forest.

Given the increasing planning activities within and outside of the Department and especially given the upcoming revision of TLMP, the Region I Sport Fish staff felt it was critical that fisheries data be better organized and a computerized data base system developed to allow rapid and more complete participation in regional planning efforts. The early efforts of this activity were reported in last year's progress report.

Table 1 lists the common names, scientific names, and abbreviations for each fish species mentioned in this report.

RECOMMENDATIONS

Management

 Develop a departmental comprehensive recreational fisheries plan for southeast Alaska.

Research

1. Continue to develop a computerized stream and lake data base.

Table 1. List of Common Names, Scientific Names, and Abbreviations.

Common Name	Scientific Name and Author	Abbreviation
Pink salmon	Oncorhynchus gorbuscha (Walbaum)	PS
Chinook salmon	Oncorhynchus tshawytscha (Walbaum)	KS
Chum salmon	Oncorhynchus keta (Walbaum)	CS
Coho salmon	Oncorhynchus kisutch (Walbaum)	SS
Sockeye salmon	Oncorhynchus nerka (Walbaum)	RS
Kokanee	Oncorhynchus nerka (Walbaum)	ко
Dolly Varden char	Salvelinus malma (Walbaum)	DV
Rainbow trout	Salmo gairdneri (Richardson)	RB
Steelhead trout	Salmo gairdneri (Richardson)	SH
Cutthroat trout	Salmo clarki (Richardson)	CT
Brook trout	Salvelinus fontinalis (Mitchell)	ВТ
Arctic grayling	Thymallus arcticus (Pallas)	GR

OBJECTIVES

- 1. Develop a computerized data base for more than 1,000 of the most important sport fishing lakes and streams in southeast Alaska.
- To participate in multiple-agency planning activities, including review of documents and attendance of meetings, in order to identify and protect sport fish resources and sport fisheries in southeast Alaska.

TECHNIQUES USED

Data Base

Additional streams and lakes were added to the general inventory data base. Value comparison unit (VCU) ratings, stocking data, and southeast Alaska harvest estimates were added to the data base. Data were organized into sequential formats for key punching. Text editors were used for data entry onto an IBM PC-XT microcomputer hard disc. Large data files, such as the Southeast sport-harvest data, were coded on paper and key punched to an 8-in floppy diskette by Woolf and Associates. These data were put on the State's mainframe IBM computer and downloaded to the micro computer. All data files were backed up on floppy diskettes (See Appendices A, B, C, and D). Programs were written in BASICA and dBASE III for development of an integrated menu-driven data-base system (See Appendices E, F, G, H, and I).

TLMP Coordination

Virtually all efforts related to this activity were directed toward the completion of the Department's report on the effects of logging on fish and wildlife. Marilyn J. Sigman, Habitat Biologist, was responsible for compiling and producing the final draft of this report.

Habitat Division prepared another report, an overview of the uses of fish and wildlife resources in southeast Alaska. This project leader was the principal supplier and reviewer of sport fisheries information included therein.

FINDINGS

Data Base

Sequentially and randomly formatted data files, in ASCII, were used to store data. There are currently four major files: (1) a general inventory file; (2) a historical stocking file; (3) the Southeast sport fish harvest data from the Statewide Harvest Survey; and (4) a file with Tongass National Forest management VCU rated for fisheries and fisheries values.

File structures are as follows:

- 1. General Inventory File: 22 fields. These fields include name of water; map reference; latitude; longitude; VCU; LUD; anadromous stream number; code for water type; presence or absence of chinook, coho, sockeye, pink and chum salmon, cutthroat, rainbow, steelhead and brook trout, Dolly Varden, kokanee, and grayling; presence or absence of USFS cabins; and record number. (See Appendix A.)
- 2. Stocking File: 10 fields. These fields include name of water; latitude; longitude; date stocked; species stocked; size of fish stocked; number of fish stocked; source of the fish used; and whether or not the stocking was successful. (See Appendix B.)
- 3. Statewide Harvest Data for Southeast Alaska: 23 fields. These fields include year; area; water type; locality; estimated fishing effort; harvest estimates for chinook, coho, sockeye, pink, and chum salmon, cutthroat, rainbow, steelhead, and brook trout, kokanee, Dolly Varden, grayling, smelt, rockfishes, other fish, and razor clams. (See Appendix C.)
- 4. VCU Rating File: four fields. These fields include VCU number; LUD designation; score of fisheries values; and score of fisheries and wildlife values combined (VCU class 1, 2, or 3). (See Appendix D.)

Menu-driven software has been written in the BASIC programming language for general accessing of information by the regional office Sport Fish staff. The program is interactive with the person at the keyboard; that is, it accepts instructions and information from the keyboard to direct the programs for accessing desired information.

The general inventory file contains nearly 400 lakes and all the known steelhead and sea-run cutthroat streams in Southeast. The only other running waters in the data base are urban systems or important sport fish systems, even though they might not contain steelhead or cutthroat. Examples of such systems would be Switzer Creek near Juneau and the Chilkoot River near Haines. More streams will be added, based on the above criteria.

The approximate number of adult fishes populating rivers and lakes listed in the data base have been determined, where possible, and will soon be put into the computer. The species included are chinook and coho salmon; cutthroat, steelhead, rainbow, and brook trout; and grayling. Where true estimates or counts have been performed, these data will be used; however, where no quantified data exist, the area biologists will make objective judgements on how many fish they believe are in specific systems. The origin of the population numbers will be indicated in the file.

There are problems with the data base in the BASIC accessing format: (1) program run times are relatively long; (2) modifying programs is a

lengthy process; and (3) file maintenance is better done with other software specializing in text editing. Because of these factors, the data base system is loosely integrated, and other than for accessing information, it is very difficult to use.

Therefore, BASICA programs are being replaced with application programs in the dBase-III language for development of a more complete, integrated data-base system. Programs are being written for file maintenance as well as for accessing information. All components of the system will be accessible through a common menu of options; dBase III also operates much faster than BASICA, reducing search times required to locate data.

TLMP Coordination

All efforts to organize sport fisheries data can be viewed as a preliminary step toward active participation in the TLMP revision process. However, ADF&G has yet to begin an active role of participation with USFS, mostly because USFS has not asked ADF&G to participate.

The major activities regarding interagency land-use planning centered around the Department's publication of a major technical report on the impacts of clearcut logging on the fish and wildlife resources of southeast Alaska; this report is the Department's response, or contribution, to the required ANILCA 5-year status report on the Tongass National Forest:

Sigman M.J., Editor. Impacts of clearcut logging on the fish and wildlife resources of southeast Alaska. Alaska Department of Fish and Game. Habitat Division. Technical Report 85-3. November, 1985. 95p.

The fisheries section is referenced as follows:

Schwan, M., Elliott, S., and Edgington, J. Part II: The impacts of clearcut logging on the fisheries resources of southeast Alaska. In: Impacts of clearcut logging on the fish and wildlife resources of southeast Alaska. M.J. Sigman, Editor. Alaska Department of Fish and Game. Habitat Division. Technical Report 85-3. November, 1985. pp. 59-95.

Additionally, the regional overview publication, mentioned above, is referenced as follows:

Sigman, M.J. A regional overview of fish and wildlife use in southeast Alaska. Alaska Department of Fish and Game. Habitat Division. Technical Report 85-4. 15 p.

Prepared by:

Approved by:

Mark W. Schwan Fishery Biologist E. Richard Logan, Ph.D., Director Division of Sport Fish

Louis S. Bandirola, Deputy Director Division of Sport Fish

APPENDIX A.

Sample of General Catalog and Inventory Data File.

```
BEHM CANAL KEASSILASALSOSPADASOLIOLISTICOSCO

BEHM CANAL KEASSILASALSOSPADASOLIOLISTICOSCO

BEHM CANAL KEAASSILASICOSSPROPILOTSILOASO

BEHM CANAL KEAASSILASICOSSPROPILOTSILOASO

BEHM CANAL KEAASSILASICOSSILOASILOASOLOSCO

BELL ISLAND KEAASSISOCISIOSALTASILOISTICOSCO

BELL ISLAND KEAASSISOCISTATILIOISTICOSCO

BERNERS JUCISSESALASISSOCISTATILIOISCOLOCO

BETTY PABSISITISCISTATICOSCO

BIG KEAASSILASICOSSISTICOSCOLOCO

BIS PEAASSICOSSISTICOSSISTICOSCOLOCO

BIS PEAASSICOSSISTICOSSISTICOSCOLOCO

BIS SAY PACASSISSOCISTITICOSCOLOCO

BIS SAY PACASSISOCISTITICOSCOLOCO

BIS SAY PACASSISOCISTITICOSCOLOCO

BIS SAY RACASSISOCISTITICOSCOLOCO

BIS SAY RACASSICOCO

BIS SCAT
                                                                                                                                                                                                                                              3010110011100 481
3010100011100 485
3010110011100 521
3010100011100 530
3010100011100 531
2010110011100 543
3011110011100 489
2011011000100 781
10000001000100 139
2011110011100 586
2011110011100 587
2000001000100 788
3010110011100 497
1010111011100 40
1000000000001 267
2011110011100 40
                                                                                 KEA355:434:305940830::0:5::0300
 BEHM CANAL
                                                                                                                                                                                                                                                                                                   3010110011100 481
 213 BAY 1
813 BAY 1
813 BAY 2
813 BCAT
                                                                              BIG SALT LAKE 1
 BIORKA PA05365100135320035120
BLACK BAY SIC7574300136071227211138110100
SLACK BEAR CRC3553254132514860970
BLACK BEAR CRC3553254132514860940
BLACK BEAR CRC:55+335132100070941071010300
BLIND PEC3563653132491445131064410240
BLGSSGM KEB2552410130362281511015510400
BLGSSGM KE32552410130362281811015510400
BLUE SIA4570430135100031830
BCHEMIAN PEC5565600133263042440
BCSTWICK KE36551555131460176371012710360
BCSTWICK KE36551555131460176361012710360
BCADFIELD BCA6560630131520052220
BRADFIELD BCA656030131520052220
BRADFIELD BCA6561342131295351441074010530
BRADFIELD BCA6561342131295351741074010530
BRADFIELD CANAL BCA6561312131433151041074010400
BRADFIELD N FORK BCA55614061312716513210740105302003
BRADFIELD N FORK BCA55614061312716514410740105302003
BRADFIELD N FORK BCA55614061312716514410740105302003
                                                                                                                                                                                                                                                                       2010110011100 420

2000001000100 789

2110111011100 492

2110111011100 203

10000001000000 55

2010110011100 512

2010110011100 513

1000001000000 77

2111111011100 561

2111111011100 562

301011011100 563

2111111011100 564

0 1000001000100 65
   SROWN COVE
                                                                                     PED356543013245004894108601003020120010
DED1544530132153070510
                                                                                                                                                                                                                                                                                                      1000001000100 65
BROWNSON
                                                                                                                                                                                                                                                                                                       1000001000000 189
                                                                                                                                                                                                                                                                                                      1000001000000 41
1000001000000 42
                                                                                                                                                                                                                                                                                                       1000001000000 43
                                                                                                                                                                                                                                                                                                       1000000010000 256
                                                                                                                                                                                                                                                                                                      1000000010000 257
1000000000010 282
                                                                                                                                                                                                                                                                                                       1000001000000 72
                                                                                                                                                                                                                                                                                                       2011100011100 474
                                                                                                                                                                                                                                                                                                     2010110011100 399
2111110000100 350
2111110000100 351
                                                                                                                                                                                                                                                                      2111110000100 350
2111110000100 351
3010110011100 591
2011000000100 349
2010110011100 494
2110110011100 506
3010110011100 507
2010111011100 627
   CASTLE
                                                                                 PE04553835133151443641064310210
                                                                                                                                                                                                                                                                                                        2010111011100 628
```

APPENDIX B.

Sample of Regional Stocking File.

51.400	: :	·	<u> </u>	R1 2 3000	uden Min 🗸
BLACK SEAR	1 553254	1325148	560713	RT 2 7000	. 1
BLANK INLET	1.		311005	87 4 1200	YES BAY 1
SLUE	1 570430	1351000	38		_ 7 _ 7 _ 7 _ 7 _ 7 _ 7 _ 7 _ 7 _ 7 _ 7
ELUE	: 552157			RT O .	SASHIN LAKE 1
	332137	1303353	080611	GR 4 10000	TOLSONA 1
SLUE	2 552137	1313355	710515	RT 4 2450	WINTHROP O
SLUE	1 570430	1351000	76	RT 0 8800	WILLAMETTE 1
BOLD ISLAND	1 5515	13125	311104	37 4 1000	WILLIAM A
BOOT KAKE	4	13122			YES BAY 0
	1 .	•	710713	RT 4 5000	ENNIS, MO 2 ENNIS, MO 2
SCOT KAKE	1.		720612	RT 4 5000	ENNIS, MO 2
BORODINO	1 5622	13444	29	DV 0 .	PORT WALTER 1
BORODINO	1 5622	13444	38	AT 0 50	
BCWER	1 550000				SASHIN LAKE O
	1 550200	1303521	680611	GR 4 20000	TOLSONA 2
BRENTWOOD (U&L)	1 5637	13445	38	RT O .	SASHIN LAKE O
SUCKHORN	1 552730	13124	650719	RT 4 3000	TEBENKOFF 2
3UG-3E	1 553945	1320330	311130		
CALIFORNIA HEAD	~	1320330	311130		YES BAY 1
		·	311104	BT 4 200	YES BAY 0
CARLANA	1 552218	1314110	54	RT	. 0
CARLANNA	1 552219	1314111	761002	RT 4 5000	WILLAMETTE O
CARLANNA	1 552219	1314111	771020	RT 4 2000	ALASKA ENNISO
CARROLL	1	.0.4.11			
	i :	•	311104	ST 4 1000	YES BAY O
CARROLL	2 5529	13121	610824	KS 5 11023	DEER MIN 0
CARROLL	2 5539	13121	620528	KS 4 114750	SOOS CR. WN O
CARROLL	2 5529 2 5539 2 553900	13121	630531		
CARROLL				KS 4 98000	SOOS CR, WN O
	2 5539	13121	640519	KS 4 84411	SOOS CR, WN O
CARROLL	2 5539	13121	650607	KS 4 52500	SOOS CR, WN O
CARROLL	2 5539	13121	660601	KS 4 31050	SOOS CR, WN O
CHOPPER	1 552549	1313320			
CIRQUE	1 332347		690701	RT 4 2500	WINTHROP 1
	1 551900	1312352	630703	RT 4 1000	RPCL CR. OR O
CLAUDE	1 5556	13121	311104	BT 4 1600	YES BAY 0
CLIFF	1 5632	13446	31	AT A	DEEP COVE, AK2
CLGUD	1 553155	1301122			
CLOVER			720706	RT 4 2500	WINTHROP O
	1 5520	13215	560723	RT 2 18000	. 1
COHO COVE	1 550055	1312215	540817	RT 2 10000	. 0
CONNELL	1 552057	13141	31	0.7	· .
CONNELL	1 552057	13141	550809		KODIAK S
CRATER		12141			KODIAK 0
	1.	•	301004	87	. 0
CRATER	1.	•	311104	BT . 600	YES BAY 0
CRATER	1.		550706	RT 2 50000	. 0
CRATER	1 554010	•	690701	RT 4 2500	
CRYSTAL (PSG)		•			WINTHROP 1
	222222222222222222222222222222222222222	•	730630	KS 5 1140	CHIGNIK .
CRYSTAL (PSG)	2.		740520	KS 5 134400	CARSON R, WA .
CRYSTAL (PSG)	2.		740522	SS 5 289500	BLIND SLGH .
CRYSTAL (PSG)	3 .	•	750530		
	ź.	•		SS 5 448900	BLIND SLGH .
CRYSTAL (PSG)	4 •	•	7506	SH 5 9500	PSG CREEK .
CRYSTAL (PSG)	2.	•	750610	KS 5 62000	SHIP CR .
CRYSTAL (PSG)	2.		760527	SS 5 103432	SEWARD .
CRYSTAL (PSG)	2 .		760527	SS 5 150000	OI THO CLICH
CRYSTAL (PSG)	5 '	•		00 5 150000	
CRYSTAL (PSG)	<u> </u>	•	7606	SH 5 1515	FALLS CR .
CRYSTAL (PSG)	2 .	•	760615	KS 5 4100	NAKINA,BC .
CRYSTAL (PSG)	2.		760615	KS 5 8500	CHICKAMIN R .
CRYSTAL (PSG)	2.		770517	SS 5 594118	BLIND SLGH .
CRYSTAL (PSG)	5 '	•		01 5 777110	
CRYCTAL (DOC)	* •	•	7706	SH 5 630	FALLS CR .
CRYSTAL (PSG)	2 .	•	770617	KS 5 166000	ANDREW CR 1
CRYSTAL (PSG)	2.		770617	KS 5 3100	KING SAL. R .
CRYSTAL (PSG)	2222222222222222		780526	SS 5 104145	BLIND SGH .
CRYSTAL (PSG)	2 .		780615	KS 5 56102	ANDREW CR .
CRYSTAL (PSG)	5	•	7905	NG 5 JOINE	DUNICANI DILI
	ž ·	•		SS 5 128676	DUNCAN RIV
CRYSTAL (PSG)	4 •	•	7906	KS 5 16200	ANDREW CR .
CRYSTAL (PSG)	2.	•	8005	SS 5 83556	DUNCAN RIV
CRYSTAL (PSG)	2.		8006	KS 5 13676	ANDREW CR .
CRYSTAL (PSG)	2 .	-	8105	SS 5 569017	DUNICANI OTU
CRYSTAL (PSG)	5.	•		CG 4 42800	
	5 ·	•	8106	CS 4 12800	CRYSTAL CR .
	2 · · · · · · · · · · · · · · · · · · ·	•	8106	KS 5 42197	ANDREW CR .
CRYSTAL (PSG)	2.		8205	SS 5 62031	DUNCAN RIV
CRYSTAL (PSG)	7 .		8204	CS 4 14900	COVETAL CR

Sample of Statewide Harvest Data for Southeast Alaska.

APPENDIX C.

771200	350	Ó	79	53	ð	0	9	3	428	0	0	0	0	3	0	0	0	40	
771300	492	0	9	100	62	0	20	9	0	0	0	0	0	71	0	0	0	0	
771400	36	0		-0	6	0	-3)	0	0	0	9	0	-0	0	0	0	0	
771500	1380	0	21	370	123	0	39	5	0		0	176	đ	331	0	0	0	0	
771533 772200	3571 2614	0	244 356	353 644	497 231	0	315 71	9	ე 256	136	58 0	2 8 0	0	710 28	0	0	0 34	6	
772300	199	ò	0	100	431	ŏ	51	ő	15	ŏ	Ö	12	0	274	ō	ŏ	0	ō	
772400	1030	ģ	ă	100	ŏ	ŏ	31	ŏ	0	Ó	š	36	ŏ	425	ŏ	ŏ	ŏ	ŏ	
772500	332	ā	Ó	Ó	6	ō	ŏ	ō	ō	ŏ	8	271	ō	190	Ö	Ò	Ö	12	
773200	4211	0	462	130	0	0	258	7	70	0	0	59	0	546	0	0	116	108	
773300	1383)	9	153	123	0	251	48	11	0	9	3	0	348	0	0	14	797	
773400	705	0	0	30	0	0	. 0	0	0	0	136	365	34	643	59	٥	0	3	
773407	1342)	0	36	159	0	121	0	0	9	g.	Q	Q:	1451	0	0	0	0	
773500 773508	1961 1797	9	0	671	153	0	175	121	0	0	0	240	0	2075	0	6558	0	0	
774200	4619	0	484	198 1427	355 144	0	505 346	ġ.	0 131	6	0	9	0	399 292	0	27 8 2	144	212	
774210		Ď			1205	ŏ	4059	138	1651	19	ŏ	110	ŏ	1878	ŏ	ŏ	2490	1253	
774300	2597	Ó	78	602	182	ő	239	1	67	3	ŏ	99	ě	509	Ŏ	Ö	57	57	
774314		ō	749	1753	791	Ö	1150	115	127	5	ō	178	ò	3290	ō	Ò	305	362	
774400	2518	0	0	96	19	82	0	0	0	0	305	2340	289	634	108	0	0	12	
774416	335	0	0	J	0	9	0	0	0	0	0	708	0	65	0	0	0	0	
774436	878	0	0	Ç	0	99	0	0	0	0	0	518	0	351	0	0	0	0	
774500		0	0	140	37	0	857	19	0	17	328	1032	0	3877	0	0	0	3	
774613	2083	0	0	100	_6	0	729	37	0	17	71	113	0	1118	0	0	0	0	
775200 775300		0	1716	2531	377	0	5566	139	976	23	0	178	0	1245	0		3567	2198	DOTAL
775400	6639 2637	0	22	324 34	243 0	0	2823 101	2	16	20	1245	48- 569	0 198	1330 311	6 17	30923	68 0	1143	10307
775417	230	0	0	37	å	0	101	0	Ô	0	1273	226	170	211	11	0	õ	0	ď
775500		ŏ	ŏ	113	192	Ŏ	189	41	ŏ	19	189	563	ŏ	2681	ŏ	ŏ	ŏ	17	ŏ
775518	50	ā	ò	0	0	Ö	0	ō	ě	Ö	23	19	ŏ	0	ō	Ŏ	ŏ	ō	Ó
775525	107	0	0	0	0	0	100	0	0	0	0	5	0	156	0	0	0	0	¢
775615	284	0	0	0	0	0	0	0	0	0	0	223	0	244	0	0	0	0	0
775627	372	0	0	30	0	9	30	7	0	0	0	65	0	246	. 0	9	0	0	0
775630	580	0	0	84	0	0	26	2	0	. 8	555	0	0	77	0	0	-0	.0	0
776200		0	1165	1251	0	0	1373	29	225	17	0	85	Ů	59	0	747	393	45	
776205	4726	0	148	685	33	0	406	3	108	3	0	65	0	376	0	Ò	167	351	
776212 776219	636 3549	0	29 818	199 173	0	0	132	0	13 50	9	0	206	0	37 5	0	0	26 12	14 3	
776300	1718	Ď	211	169	Ò	ŏ	100	3	51	5	ŏ	189	0	127	ŏ	ů	136	57	
776394	613	ŏ	- 0	216	ō	Ŏ	49	õ	70	Õ.	ŏ	14	ŏ	19	ŏ	ŏ	23	ō	
776311	81	0	Ŏ	44	ō	9	0	ō	ŏ	ō	Ŏ	17	ō	0	Ö	Ò	- 5	Ö	
775400	1222	0	0	39	6	0	0	0	0	0	238	1194	0	401	0	0	0	0	
776500	1 056	9	0	95	69	0	50	0	0	302	569	3051	0	1117	0	0	0	0	
776501 776506	946	0	0		0	ŷ	512	0	0	14	17	113	0	93	0	0	0	0	
776521	190 248	0	0	24	0	0	0	0	- 0	6 11	0	213 17	0	113 119	0	0	0	0	
776528	1172	Ŏ	ŏ	118	ŏ	٥	119	ŏ	Ŏ	45	5	413	ů	1086	ŏ	ŏ	à	ŏ	
777200	5652	Ŏ	802	948	175	ō	1205	61	271	0	ő	62	ŏ	118	ŏ		566	42	
777300	363	0	9	100	0	0	119	0	6	ō	Ò	5	ō	172	0	-	5	0	
777400		0	0	0	0	0	0	0	0	5	119	379	0	96	0	0	0	0	
777500	4249	0		644	19	0	211	44	0	251	998	699	0	633	0		0	0	
777522		0	0	31	6	0	. 6	0	0	73	90	150	0	133	0		0	0	
777634		0	() 707	194	125	0	18	74	700	28	0	404	0	193	0		20	70.6	
778200 778202	4598	0	793 1316	786 968	119 44	0	1120 3373	71 85	390 288	49 9	0	218 136	0	631 22	0		26 59	716 529	
778203	1272	0	32:	244	77	0	372	9	72	0	0	170	0	6	0		0	20	
778209	6909	Ď	1050	1036	31	Ŏ	1928	36	261	9	0	5	ŏ	17	ŏ		113	263	
778231	2818	Ó	338	186	25	ò	633	22	79	Ġ	ŏ	57	Ö	14	ō	_	85	572	
775235	9730	0	691	771	39	0	2087	33	199	8	0	6	0	45	0		532	1937	
778238	256	0	35	28	0	0	60	3	3	0	9	0	0	23	0		0	C	
778300	4353	3	128	191	38	-0-	1747	?	58	11	0	269	0	164	. 0	0	-19	314	

APPENDIX D.

Sample of Value Comparison Unit (VCU) Rating File.

```
63130
 64232
 65130
 66232
 67130
 68433
 69433
 70433
 71322
72433
 73433
 74433
 75332
 764120010
 77423
 78130
79322
80433
 81433
 82422
83432
 84422
85433
 86433
 87422
 88433
 89422
 902110010
 91133
 92133
 93000
 94333
 95333
 96333
 97333
 98333
 99333
100120
101130
102120
103130
104120
105320
106223
1073220000
108233
1092220000
1102220000
1112220000
112333
113333
114323
115322
116323
1173220001
118333
119323
120322
1213330000
122333
123333
1242220001
1253330000
1263220000
127332
```

APPENDIX E.

Samples of Opening Menus for Database.

SPORT FISH DATABASE MENU	
THE FOLLOWING PROCEDURES ARE AVAILABLE:	
GENERAL LAKE AND STREAM INVENTORY DATA ADDING NEW RECORDS TO THE LAKE/STREAM FILE REGIONAL SPORT FISH DISTRIBUTION REGIONAL STOCKING INFORMATION ADDING NEW RECORDS TO THE STOCKING FILE SPORT FISHING HARVEST AND EFFORT DATA (MILLS) EXIT TO <.> JBASE PROMPT	= 1 = 2 = 3 = 4 = 5 = 6 = 7
PRESS THE NUMBER CORRESPONDING TO YOUR SELECTION	======================================

SPORT FISH DIVISION DATABASE SYSTEM THE FOLLOWING INFORMATION IS CURRENTLY ON FILE: 1) GENERAL LAKE AND STREAM INFORMATION 2) REGIONAL LAKE AND STREAM STOCKING DATA 3) LOCATIONS OF USFS RECREATIONAL CABINS 4) RATINGS OF VCUS 5) SPORT FISH HARVEST DATA (Mills' Postal Survey)

(1)=GENERAL (2)=STOCKING (3)=CABINS (4)=VCUs (5)=HARVEST (6)=EXIT TO DOS

ENTER SELECTION NUMBER?

APPENDIX F.

Samples of Custom Data Entry Screens.

DATA ENTRY FORM FOR GENERAL STREAM AND LAKE INFORMATION (use UPPER case, please)

Current Record Number:

8

ENTER NAME (HIT RETURN TO EXIT)
ENTER WATER NAME CODE
(1=LAKE.2=STREAM.3=LOCATION)
ENTER MAP REF

ENTER LATITUDE (DDMMSS)
ENTER LONGITUDE (DDMMSS)

ENTER VCU (Enter Values for all Rec) (Select Nearby VCU for non Forest sites)

ENTER LUD (use nos.>4 for ownership) (5=Nat Park:6=City;7=State;8=Private)

ENTER ANADROMOUS STREAM NUMBER, OR O

SPECIES OCCURANCE. ENTER 1 IF PRESENT, 0 IF ABSENT KS SS RS PS CS CT

SS RS PS CS CT RT SH DV BT GR

ENTER THE NUMBER OF USFS CABINS PRESENT ENTER IDENTIFICATION NUMBER FOR RECORD

CUSTOM DATA ENTRY FORM FOR STOCKING FILE (use UPPER case: enter + for missing values) Current Rec No: ENTER THE NAME OF THE LAKE OR STREAM (HIT RETURN TO EXIT):

14

KO

ENTER THE WATER TYPE CODE (1=LAKE: 2=STREAM):

ENTER LATITUDE (DDMMSS):

ENTER LONGITUDE (DOMMSS):

ENTER THE DATE OF STOCKING (YYMMDD):

ENTER THE SPECIES (USE STANDARD TWO LETTER SPECIES CODE):

ENTER THE CODE FOR SIZE OF FISH (1=GREEN EGG; 2=EYED EGG; 3=SAC FRY; 4=FRY; 5=SMOLT; 6=CATCHABLE; 7=FINGERLING):

ENTER THE NUMBER OF FISH STOCKED:

ENTER THE SOURCE OF FISH IF KNOWN (USE NAME OF LAKE OR STREAM FOR WILD STOCKS; HATCHERY FOR ARTIFICIAL STOCKS):

SUCCESS (O=NOT EVALUATED: 1=SUCCESSFUL: 2=UNSUCCESSFUL):

APPENDIX G.

Samples of Data Outputs.

ROCKFISH SPORT HARVEST

AREA	1980	1981	1982	1983	1984	AVE
YAKUTAT GL. BAY HAINES JUNEAU SITKA	0 43 319 6724 8481	44 259 320 5649 11337	52 168 1583 6141 13027	105 409 168 7859 9855	146 85 558 5978 6375	69 192 689 6470 9915
NSE	15567	18609	20971	18396	13142	17337
PSG∕WGL POW KETCH	2841 4968 18415	1937 4544 2058:	1581 8027 21023	1008 12040 18824	2265 5197 16295	1926 6955 19027
SSE	26224	27062	30631	31872	23757	27909
TOTAL	41791	45671	51602	50268	36899	45246

STREAM AND LAKE INVENTORY FORM

STREAM: NAHA

MAP REFERENCE: KEC5

LATITUDE:553534 N. LONGITUDE:1313533 W. ANAD. NO.:1019010500

THIS WATER IS ACCESSIBLE TO ANADROMOUS FISHES.

FISH SPECIES PRESENT: SS RS PS CS CT RT SH DV

THIS WATER IS LOCATED IN THE TONGASS NATIONAL FOREST.

THERE IS/ARE 6 RECREATIONAL CABIN(S) PRESENT.

VCU LUD SPORT FISH RANK FHIP CLASS
742 2 1 1

NAME	YEAR	SPECIES	SIZE	SOURCE	RESULTS
ANTLER	62	GR	FRY	GLENNALLEN	SUCCESSFUL
ANTLER	64	GR	EYED EGG	GLENNALLEN	SUCCESSFUL
ANTLER	65	GR	FRY	GLENNALLEN	SUCCESSFUL
ANTLER	66	GR	FRY	GLENNALLEN	SUCCESSFUL

THERE ARE NO MORE MATCHING RECORDS.

DO YOU WANT TO KNOW SOMETHING ABOUT ANOTHER LAKE OR STREAM? ENTER (Y/N)

APPENDIX H.

Sample of an Application Program in dBASE III.
This Program Creates an Opening Menu for Data Selection.

```
SET HEADING OFF
SET SAFETY OFF
SET TALK OFF
SET ECHO OFF
STORE 1 TO MARK
DO WHILE MARK=1
CLEAR
====="
@ 4,24 SAY "SPORT FISH DATABASE MENU"
? "
              THE FOLLOWING PROCEDURES ARE AVAILABLE:"
? "
          GENERAL LAKE AND STREAM INVENTORY DATA
          ADDING NEW RECORDS TO THE LAKE/STREAM FILE
                                                = 2"
          REGIONAL SPORT FISH DISTRIBUTION REGIONAL STOCKING INFORMATION
                                                = 3"
                                                = 4"
          ADDING NEW RECORDS TO THE STOCKING FILE
                                                = 5"
? "
          SPORT FISHING HARVEST AND EFFORT DATA (MILLS) = 6"
          EXIT TO <.> dBASE PROMPT
PRESS THE NUMBER CORRESPONDING TO YOUR SELECTION' TO SELECTION
' TIAW
CLEAR
IF SELECTION="1"
   DO CATTEST
   WAIT
ENDIF
IF SELECTION="2"
   DO SURVEY
   WAIT
ENDIF
IF SELECTION="3"
   DO FISHON
   WAIT
ENDIF
IF SELECTION="4"
   DO SEESTOCK
   WAIT
ENDIF
IF SELECTION="5"
   DO FISHMOVE
   WAIT
ENDIF
IF SELECTION="6"
   DO HARVEST
ENDIF
IF SELECTION="7"
   RETURN
ENDIF
ENDDO
```

APPENDIX I.

Sample Programs for Custom Screen Data Entry and File Sorting.

```
@ 1.8 SAY "DATA ENTRY FORM FOR GENERAL STREAM AND LAKE INFORMATION"
@ 2.20 SAY "(use UPPER case, please)
à 3.15 SAY "Current Record Number:
@ 3,40 SAY RECNO()
a 4.5 SAY "ENTER NAME (HIT RETURN TO EXIT)
                                                    " GET NAME
a 5.5 SAY "ENTER WATER NAME CODE
                                                    " GET CODE
@ 6.5 SAY "(1=LAKE.2=STREAM.3=LOCATION)"
@ 7.5 SAY "ENTER MAP REF
                                                    " GET MAP
3 8.5 SAY "ENTER LATITUDE (DDMMSS)
9.5 SAY "ENTER LONGITUDE (DDMMSS)
                                                    " GET LAT
                                                    " GET LONG
@ 10.5 SAY "ENTER VCU (Enter Values for all Rec)" GET VCU
a 11.5 SAY "(Select Nearby VCU for non Forest sites)"
a 12.5 SAY "ENTER LUD (use nos.>4 for ownership)" GET LUD
a 13.5 SAY "(5=Nat Park;6=City;7=State;8=Private)"
a 15.5 SAY "ENTER ANADROMOUS STREAM NUMBER. OR O" GET NUMBER
a 17.5 SAY " SPECIES OCCURANCE, ENTER 1 IF PRESENT, O IF ABSENT"
a 18.5 SAY "KS" GET KS
a 18,15 SAY "SS" GET SS
@ 18.25 SAY "RS" GET RS
@ 18,35 SAY "PS" GET PS
@ 18.45 SAY "CS" GET CS
@ 18.55 SAY "CT" GET CT
@ 18.65 SAY "KO" GET KO
@ 19,10 SAY "RT" GET RT
a 19,20 SAY "SH" GET SH
@ 19.30 SAY "DV" GET DV
@ 19,40 SAY "BT" GET BT
@ 19,50 SAY "GR" GET GR
@ 21.5 SAY "ENTER THE NUMBER OF USFS CABINS PRESENT
                                                            " GET CA
" GET REC
a 22.5 SAY "ENTER IDENTIFICATION NUMBER FOR RECORD
```

SET BELL OFF
SET TALK OFF
USE SURVEY
SET FORMAT TO SURVEY
APPEND
SORT ON NAME TO WATSORT
CLOSE DATABASES
ERASE SURVEY.DBF
RENAME WATSORT.DBF TO SURVEY.DBF
CLEAR
RETURN